Electrodynamics Exam
 2 March 2015, 18.30-21.30 uur

Rules:

- Closed book part ≤ 2 hours, open book part all remaining time.
- Please formulate clearly and concisely. Read carefully.
- Grade $=1+\frac{\text { score }}{10}$.

1. Radiation and Special Relativity $[8+8+8+8+8=40$ points]

(a) Explain how retardation plays a role in the production of radiation.
(b) Use the basic ideas underlying special relativity to explain the difference between the classical and relativistic Doppler effect.
(c) Can a relativistically moving observer and one in rest agree on the total emitted and absorbed power? State why (not).
(d) Construct Lorentz invariants using all the properties of the absorption coefficient α_{ν}, for photon frequency ν. Always give units.
(e) Explain what Thomson scattering is and under what conditions relativistic effects are likely to modify its associated cross section.

2. Radiation Basics [5+5+5+5=20 points]

(a) Describe a fundamental similarity between Bremsstrahlung, synchroton emission and inverse Compton scattering, use the gamma factor γ.
(b) Explain why one does not expect much polarization from synchrotron emission driven by a tangled magnetic field. Use the concept of beaming.
(c) Consider thermal Bremsstrahlung and discuss when it may suffer from a photon discreteness effect.
(d) Explain, using the equation of radiation transfer, how blackbody radiation may emerge from a medium with an embedded non-thermal source.
$\sum \quad$ end of closed book part, please hand in questions 1 and 2.
3. An Observable Spectrum $[10+10+10=30$ points $]$
(a) Provide a drawing of intensity versus frequency for saturated inverse Compton scattering produced by a thermal and non-relativistic medium. Use formulas to explain the relevance of the (frequency dependent) Compton y parameter.
(b) What two intrinsic physical causes can you think of that would induce a low-frequency cut-off in such a spectrum?
(c) What limitations does the Earth's atmosphere pose to actually observe the spectrum that you provide?

[^0]
[^0]: \sum end of exam, please hand in question 3.

